skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ochai, Sunday Ochonu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Chang, Yung-Fu (Ed.)
    The diagnosis of anthrax, a zoonotic disease caused byBacillus anthraciscan be complicated by detection of closely related species. Conventional diagnosis of anthrax involves microscopy, culture identification of bacterial colonies and molecular detection. Genetic markers used are often virulence gene targets such asB. anthracisprotective antigen (pagA, also called BAPA, occurring on plasmid pXO1), lethal factor (lef, on pXO1), capsule-encodingcapB/C(located on pXO2) as well as chromosomal Ba-1. Combinations of genetic markers using real-time/quantitative polymerase chain reaction (qPCR) are used to confirmB.anthracisfrom culture but can also be used directly on diagnostic samples to avoid propagation and its associated biorisks and for faster identification. We investigated how the presence of closely related species could complicate anthrax diagnoses with and without culture to standardise the use of genetic markers using qPCR for accurate anthrax diagnosis. Using blood smears from 2012–2020 from wildlife mortalities (n = 1708) in Kruger National Park in South Africa where anthrax is endemic, we contrasted anthrax diagnostic results based on qPCR, microscopy, and culture. From smears, 113/1708 grew bacteria in culture, from which 506 isolates were obtained. Of these isolates, only 24.7% (125 isolates) were positive forB.anthracisbased on genetic markers or microscopy. However, among these, merely 4/125 (3.2%) were confirmedB.anthracisisolates (based on morphology, microscopy, and sensitivity testing to penicillin and gamma-phage) from the blood smear, likely due to poor survival of spores on stored smears. This study identifiedB.cereus sensu lato, which includedB.cereusandB.anthracis,Peribacillusspp., andPriestiaspp. clusters usinggyrBgene in selected bacterial isolates positive forpagAregion using BAPA probe. Using qPCR on blood smears, 52.1% (890 samples) tested positive forB.anthracisbased on one or a combination of genetic markers which included the 25 positive controls. Notably, the standardlefprimer set displayed the lowest specificity and accuracy. The Ba-1+BAPA+lefcombination showed 100% specificity, sensitivity, and accuracy. Various marker combinations, such as Ba-1+capB, BAPA+capB, Ba-1+BAPA+capB+lef, and BAPA+lef+capB, all demonstrated 100.0% specificity and 98.7% accuracy, while maintaining a sensitivity of 96.6%. Using Ba-1+BAPA+lef+capB, as well as Ba-1+BAPA+lefwith molecular diagnosis accurately detectsB.anthracisin the absence of bacterial culture. Systematically combining microscopy and molecular markers holds promise for notably reducing false positives. This significantly enhances the detection and surveillance of diseases like anthrax in southern Africa and beyond and reduces the need for propagation of the bacteria in culture. 
    more » « less
  2. Chen, Nan-Hua (Ed.)
    Background:Although the rate of emerging infectious diseases that originate in wildlife has been increasing globally in recent decades, there is currently a lack of epidemiological data from wild animals. Methodology:We used serology to determine prior exposure to foot‐and‐mouth disease virus (FMDV),Brucellaspp., andCoxiella burnetiiand used genetic testing to detect blood‐borne parasitic infections in the generaEhrlichia,Anaplasma,Theileria, andBabesiafrom wildlife in two national parks, Kruger National Park (KNP), South Africa, and Etosha National Park (ENP), Namibia. Serum and whole blood samples were obtained from free‐roaming plains zebra (Equus quagga), greater kudu (Tragelaphus strepsiceros), impala (Aepyceros melampus), and blue wildebeest (Connochaetes taurinus). Risk factors (host species, sex, and sampling park) for infection with each pathogen were assessed, as well as the prevalence and distribution of co‐occurring infections. Results:In KNP 13/29 (45%; confidence interval [CI]: 26%–64%) kudus tested positive for FMD, but none of these reacted to SAT serotypes. For brucellosis, seropositive results were obtained for 3/29 (10%; CI: 2%–27%) kudu samples. Antibodies againstC. burnetiiwere detected in 6/29 (21%; CI: 8%–40%) kudus, 14/21 (67%; CI: 43%–85%) impalas, and 18/39 (46%; CI: 30%–63%) zebras. A total of 28/28 kudus tested positive forTheileriaspp. (100%; CI: 88%–100%) and 27/28 forAnaplasma/Ehrlichiaspp. (96%; CI: 82%–100%), whereas 12/19 impalas (63%) and 2/39 zebra (5%) tested positive forAnaplasma centrale. In ENP, only 1/29 (3%; CI: 0%–18%) wildebeest samples tested positive for FMD. None of the samples tested positive for brucellosis, whileC. burnetiiantibodies were detected in 26/30 wildebeests (87%; CI: 69%–96%), 16/40 kudus (40%; CI: 25%–57%), and 26/26 plains zebras (100%; CI: 87%–100%). A total of 60%Anaplasma/Ehrlichiaspp. and 35%Theileria/Babesiaspp. in kudu and 37% wildebeest tested positive toTheileriasp. (sable), 30% toBabesia occultans, and 3%–7% toAnaplasmaspp. The seroprevalence of Q fever was significantly higher in ENP, whileBrucellaspp.,Anaplasma,Ehrlichia,Theileria, andBabesiaspecies were significantly higher in KNP. Significant coinfections were also identified. Conclusion:This work provided baseline serological and molecular data on 40+ pathogens in four wildlife species from two national parks in southern Africa. 
    more » « less